
Journal of Apphed Mechanics and Technical Physics, Vol. 36, No. 5, 1995 

THE A S Y M P T O T I C  T H E O R Y  OF 

T H E R M O E L A S T I C  B E A M S  

A. G. Kolpakov UDC 539.3 

The investigation of problems in thin regions leads to lower-dimensional problems: in regions with a 
small thickness, to plate theories [1-3]; and in small-diameter regions, to beam theories [4-6]. An analogue 
of the averaging method [7-8] is applicable in this situation. The peculiarities of the problems are clarified 
in studying the cell problem (which is insufficiently studied in terms of the purely mathematical  theory). An 
analysis of the problem indicates the significant influence of the microstucture on the macroscopic properties 
of beams and establishes their interrelation. An asymptotic analysis of the thermoelastic problem in a small- 
diameter region is carried out in this paper. The thermoelastic problem was studied earlier for monolithic 
composites [9-14] and for for plates [15-17]. 

S t a t e m e n t  of  t h e  P r o b l e m .  Let a linear thermoelastic material occupy a region ~ C R 3 obtained 
by periodic repetition of a periodicity cell (PC) P~ along th.e Oxl axis (see Fig. 1). The PC P~ is obtained 
by homothetic compression with a coefficient e of some e-independent cell P1; as a result, the geometric 
dimensions of P~ remain unchanged as e is varied. The cell P1 has congruent lateral faces, parallel to the 
plane Oy2y3, and a piecewise smooth free boundary 3' (the last property is immediately extended to the 
boundary Pe of the PC and the boundary of fie). Otherwise, the cell P~ is rather arbitrary; in particular, it 
can be multi-connected (for example, in farms). 

The equilibrium equations for this three-dimensional body with fixed lateral faces (see Fig. 1) have the 
form [18] 

f + f (e- g)vdx: f (e-2flvdx Ii) 

for any v E V(12~) = {v E H I ( ~ )  : v(x)  = 0 at Xl = + l} .  For the definition of H 1 see, for example, [19]. 
Here a~j are the local stresses related to the local displacements u ~ by the Duhamel-Neumann law [18]: 

O'i~ = e-4aijkl(X/e)Uek,l  .a t- e--4~(-4)(x/e)0, (2) 

where 8 is temperature (we assume it to be a smooth known function); and {aijkl } is the tensor of elastic 
constants; {/3i/) is the tensor of thermoelastic constants; and/3ij  = e-4aijklakl ({akl} are the coefficients of 
thermal expansion). 

R e m a r k  1 (the choice of orders). Orders are chosen under the asumption that in the limit e ~ 0, 
the beam has nonzero stiffness and the forces are not equal to zero: the volume and surface forces are of 
order e -s,  and elastic constants are of order e -4. The problem of orders is of prime importance. Thus, the 
classical thermoelastic relations have been derived in [15, 16] for plates with thermal expansion coefficients 
of order e. This choice of orders excludes the usual axial elongation. In our case. with the choice of flij of 
order e -4 (correspondingly, aii is of the order of one) this elongation is taken into account, but to equilibrate 
arising moments,  the beam deflections have to be of order e -1. The functions f (x)  and g(x) are considered 
independent of e. 
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Fig. 1 

The periodicity of the beam microstructure is taken into account by the fact that the functions 
aijkl(x/e) and /Sij(x/e) are periodic in xl with period em ([0,em] is the projection of the PC onto the 
aXiS OXl). 

A s y m p t o t i c  Expans ion .  The asymptotic expansion has the form: 
for the displacements: 

= ~ - l w ( a - ' ) ( / 1 ) e a  - -  y,w(.::(xl)el + ~-ly~sflefl(p(-1)(Xl) Jr u ( 0 ) ( X l )  + C U ( ' ) ( x l , y )  -{- . . . (3)  u r 

[ ~ = 2 a t  ~ = 3 ,  ~ = 3  at /3=2 ,  

for the test function: 

for the stresses: 

sl = 0 ,  s 2 =  1, S3 : - - 1  (fl=2,3)1; 

v = v(~ + evO)(xx,y) + . . . ;  

!9)( ) !;3)( ) O'ij=e-40 " Xl,y +e-3r x l , y  + . . . ,  

where xt E [-1,  1] is a slow variable and y = x /e  are fast variables [7, 8]; and {ei} is the ith basis vector of 
the standard rectangular system of coordinates. The functions on the right-hand sides of (3) are assumed to 
be periodic in yl with period m. Note that the first three terms in (3) correspond to the local problems of 
bending and torsion of a beam (see below). Here and below, the Greek indices take on values 2 and 3 and the 
Latin ones takes values 1, 2, 3. 

The operator of differentiation O/Oxi for functions of the form f (x l ,  y) can be written as 

6q g--1 6q g_, 0 (a = 2,3). (4) 
O x--; + oy--;' oy---: 

After using (4), from (1), we obtain 

(5) 

Here and below, we use the notation ,jy = O/Oyj and ,lx = O/Oxl. 
We change the variables in (5): 

= ( x l , y 2 , y 3 )  = (xl,x l ,xsl ). 
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Then 

~2 t t J(.~j.-'.,,.-J-o~IVi, lx)dz-J- J gv dz = J ' V  dz, (6) 
fll Pl 01 

where f~l and F1 are the regions obtained from f~r and Fe by increasing their cross section by a factor of ~-1 
(the diameters of f~l and F1 are of the order of one). Substitution of (3) into (6) yields 

/g2[gm+k-lo.(m) (k)m+k (m).(k)'~d~.a_ f f E E ~ ,. v~,s~ + ~ ,.~1 ~  E ~gv(  ~)d.. = E ~ f v (  ~)d~. (7) 
k=0  r n = - 4  ~1 k=0  F1 k=0 i'll 

After substi tuting (3) into the Duhamel-Neumann law and equating expressions with equal powers of 
~, we obtain 

{~ 
cr!?) = a i j k l ( X / g ) u ( m ' l : 5 ) + a i j k l ( X / g ) U k ' l : 4 ) +  fl}74)(X/~)O at ra = - -4 .  (8) 

Here and below in sums m = - 4 , - 3 , . . . ,  k = 0, 1, . . . .  
It is necessary to take into account that 

e - 4 [ a i j a l e - l w ( 7 ? )  (Xl ) - a i j l a e - l ( y a w ( - 1 )  ( Xl ) ),o~y] = ~-5[ai jal  - aijla] = O, 

r162  aijkl(s3yhe/3qO(Xl)),l~] = r - aijs2] = 0 

by virtue of the symmetry of the elastic constants [18]. It follows from these equalities that  terms of order e -s 
do not appear in the expansion of stresses (3) 

D e r i v a t i o n  of  E q u i l i b r i u m  E q u a t i o n s .  The principal aim of this paper is to get a boundary value 
problem for functions appearing in the asymptotic expansion (3). To do so, we consider problem (7), (8) for 
some choice of k, m and a special choice of the test function v. 

R e m a r k  2. We introduce the notation 

{f} = _1 [ f (y )  dy - -  the mean value P1 of the PC in fast variables, 
m d 

P1 

(f)~ = _1 [ f (y )  dy - -  the mean value P1 on the lateral surface 7 of the P C .  
m d 

3' 

The following relations hold as e --+ 0: 

1 

f f(xl,y)d.--+ /(f)(xl)dXl, 
~I -I 

1 

F 1 --1 

Let k = 0 [i.e., we assume that  in (3) v (k) = 0 for k = 1, 2 , . . .  which is possible by virtue of the arbitrariness 
of {v(k)}]. For these k and v, it follows from (7) that  

oo 

e2 f ~176 .1,, [ gv(~ f f v  (0) o v,1 ,,1.-o + _- dz = J dz. 
r n= - -4  fl 1 rl f~l 

We introduce the quantaties N!7) = {a!~ )) (with the meaning of axial moments [5]) and M! m) = 

(ya~!l)) (which have the meaning of bending moments).  In the above notation, using Remark 2 and equating 
terms with identical nonpositive powers of e in the last equality, we get 

N (-4) =0,  N (-a) 0, N (-2) il,lx il,lz = i l , l z  = (gi)'r + (fi). (9) 
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We set in (7) k = 1 (i.e., all summands in expression (3) for the test function v are equal to zero, 
except for v(1)) and choose v (1) as 

V(1)(Z1, y) = y2V2(Xl) Jr" y3V3(Xl)- (10) 

Here v2,v3 E C1([-1,1]) and v2(+1) = v3(+1) = 0. With this choice of k and v, Eq. (7) takes the form 
oo 

crn+l(Y (m)[" V E {cmo'!?)(U2i~2j -{-V3i~3j) "~ il I, y2 2i,lz q- y3v3i, lz)}dz 
m=-4  fl I 

+ / g( . v2 + y3v3) - = / f(y2v2 + y3v3)dz (11) 
F1 ~1 

Making use of Remark 2 and equating expressions with identical nonpositive powers of e, from (11), we obtain 

N}~ -4) = 0, - M  (-4) oti,lx "~- N!~ -3) = 0 for m = -4;  
(13) _ a,d -a) ""ai.lx -}- N}~ -2)= (giYa)'r + (flya) for m = - 3  

(a = 2, 3). Relations (9), (12), and (13) are the equilibrium eqautions of a one-dimensional beam. 
D e r i v a t i o n  of Gove rn ing  Rela t ions .  Let us now establish relations between the forces and moments 

introduced above and the strain characteristics of a beam. Note that the main peculiarities of problems in 
thin regions become more pronounced in derivation of limiting governing relations [1-6]. 

We set k = 1, m = - 4  and choose the test function in the form v = ev(1)(y) [the other v (k) in (3) are 
equal to zero]. For v thus chosen, from (7), we obtain the problem 

a(-4)  = 0 in ~1 o'};4)nj  = 0 on r l ,  (14) ij,jy 

where n is the normal to the lateral surface of the region fh.  
We make use of relation (8) for m = -4 .  Substituting it into (14) with allowance for (3) yields the 

equation 

a / o~w (-1) (aijkl(y)uil)y + aijpx(y)u~O,~z(Xl)"q- ijXatY) a,lxlz 

q- 8flaijfl~(y)~}?:)(Xl) q- fl~4)(~r)8(Xl)),jy ---- 0 in a 1 (15) 

with the boundary condition 

a /. ~w (-1) /Xl~ (aijkl(Y)uil,~y + aijpl(Y)u~O,~x(Xl)Jr- ijiotl,,Y) ot,lziz, } 

"q- sflaijfl~(y)~!l:)(Xl) -.]- fl!]-4)(y)8(xi))nj = 0 on r i  (16) 

and the requirement of periodicity: u(1)(xl, y) is a periodic function of yl of period m. By F1 is denoted the 
lateral surface of PC 121 (see Fig. 1). 

In the problem in variable y, functions of Xl play the role of parameters [1, 19]. In view of this, problem 
(15), (16) leads to the cell problems (CPr) of beam theory. Here appear problems corresponding to torsion 
and thermal deformations, which are new compared to CPr for monolithic composites [7, 8] and plates [1, 2]. 

We now introduce the function X lp (y) as a solution of "the first elastic CPr of beam theory" 

lp (17) (aijkl(y)Xl,Ply + aijpl(y)),jy = 0 in P1, (aijkl(Y)Xk,ly + aijpl(y))nj = 0 on 7 

(X lp is a periodic function of yl of period m, (X lp) = 0). 
We introduce the function Xa(y) as a solution of the "CPr of beam torsion" 

(aijkl(y)X~,ly + aij#l(y)s/ty~),jy = 0 in P1, (aijkl(y)X~,ly -t- aijfll(y)sfly~)nj = 0 on 7 (18) 
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[X3(y) is a periodic function of yl with period m, (X 3) = 0]. 
We introduce the function .T'(y) as solution of "the first thermoelastic PC of beam theory": 

(aijkl(y)j~k,ly + fl};4)(y)),jy = 0 in P1, (aijkt(y).TLly +/3};4)(y))nj = 0 on 7 (19) 

[U(y) is a periodic function of Yl with period m, (.%') = 0]. 
By virtue of the linearity of problem (15), (16) and the remark on functions of Xl, the solution of (15), 

(16) can be represented as a linear combination of solutions of CPr (17)-(19) in the form 

2~ (-1) X 3 ( y ) ~ ! l l )  (Xl) + U ( X l ) .  (20) U (1) = xlp(y)u~O,~z(Xl)+ X (y)W,,lx(Xl) + .~'(y)O(Xl)+ 

U(Xl) appear in (20) because (15), (16) contain only derivatives with respect to y. 
Some part of solutions of CPr (17) is found in an explicit way, namely [5]: 

X~"(y) = --61kYa ((~ ---- 2, 3). (21) 

Note that  (20) is a particular solution of the problem (15) and (16). This distinguishes the problem 
for a beam from the problem for a plate. To derive the general solution of (15) and (16), we consider a 
homogeneous problem corresponding to (15) and (16). 

(a i jk t (y)Xk, ly) , jy  = 0 in P1, aijkl(y)Xk,lyn j = 0 on 3' 

[X(y) is a periodic function of Yl with period m, (X) = 0]. 
The solution of this problem is X = y~s/3e~(xl) for any function ~(Xl). Indeed, 

aijkl(yhs#e#~(Zl))k,ly = (aij23 -- aij32)~(Xl) = 0, (22) 

since by virtue of the symmetry of elastic constants [18], aij23 = aij32. Note that,  in the absence of this 
symmetry, the situation is radically changed [20-23]. 

As is seen, the solution of the homogeneous CPr introduces formally one more degree of freedom - -  the 
torsion of a beam. For- monolithic composites and plates, the solution of the homogeneous problem is equal 
to zero [1, 7]. 

Taking into account the previous results, the general solution of the problem (15), (16) is the sum of 
(20) and of the solution of the homogeneous problem and can be written in the coordinate form 

U]I) 11 (0) X 21 (--1) = X1 (Y)Ul,lx(1) -- Yau(~O,{x(XI) "[- Xl  (Y)Wa,lx(Xl) + ~ ' l (y)0(Xl)+ Xa(y)~ll-1)(Xl) + / 1 ( X l ) ,  
(23) 

U~I) 11 (0) 2a (--1) 3 (--1) = X k (Y)Ul,lz(Xl)+.~(Y)O(xl)TX~ (Y)Wa,lz(Xl)WX/~(Y)~,lz ( X l ) + y j s 3 ~ ( X l ) - [ - U f l ( X l ) .  

Substituting (23) into (8) for the case m -- - 4 ,  after calculations, we get 

11 (0) cr!j -4) = aij11(y)u~~ + aijkl(Y)Xk,ly(Y)Ul,lx(Xl) & aij~(Y)S~O(Xl) + aijkl(Y)~'k,ly(Y)O(Xl) 

a t. ~w (-1) (xa ~ 2~ (-1) +/3};4)(y)O(xl) + ijlatY) a,lxlzt I + aijkl(y)Xk,ly(Y)Wa,lzlx(xl) 

+ aij~(y)y~s#cP}l~)( Xl ) + aiikt(y)X~,ly(Y)qa}l~)(Xl ). (24) 

Integrating first (24) and then (24) multiplied by y~ (taking into account that  in this procedure 
functions of xa behave as parameters), we get, for isotropic materials, 

aO1 (--1) BOl 0 + i11,;(~1). N}1"4) = A~176176 + l'i111wc',a~1:: + " (25) 

M};4)  h i0 .  (0) , i l l  . (-1) Blflo , (-1) 
= .,'xifl~l,lx + ."xi/3eLWo~,lzl x + + '1i3~,1 x 
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(ai l~ = 0 for isotropic materials [18]). Here 

11 Ai jO0 = (aiju(y) + aokl(y)Xk,ly(y)), 
2a Ail~ = ((ailll(Y) + ai3kl(y)Xk,ly(y))y[t ), 

B~ = (31j-4)(y) + aijkl(Y).Tk,lu(Y)), 

Iij = (aijkl(y)X~,ly(y)}, 

O: oa Ai~ a = (ai~lu(y) + ai/tkl(y)X~.ly(Y) }, 
II 2a Ai~e~ = ((aina(y)  + ailkl(y)Xk,ty(y))y~), 

B 1  = ((fl}~-4)(y)+ ailkl(y).Tk,ly(y))y~) ' 

Ji~ = (ailkl(Y)X~,ty(Y)Y~). 

The equilibrium equations for determining u~ ~ w (-1), c2 (-1) are of the form [see (9), (12)] 

N (-4) = 0 11,1x 

~f(-4) -- 0 
" ~ l a . l x l x  - -  

,M,lz = 0 

(for axial forces), 

(for bending moments), 

(for the twisting moment) 

(26) 

(27) 

(3,4 = M~3 -4) - M ~  4) is the torsion moment).  To obtain the second equation from (24) it is neseccary to 
differentiate (12) for i = 1 and use (9). The third equation of (27) follows from (12) and from the equality 

N~-3) = N~23), which is a consequence of the symmetry of the stress tensor. 
Boundary conditions follow from expansion (2): 

tt~O)(~1) = W(~-I)(::[:I) = w(-l)(-t-I ' = ? = o. (28) 

The solution of problem (27), (28) in the general case is not equal to zero, because of the presence of 
thermoelastic terms. 

D e r i v a t i o n  of H i g h e r - O r d e r  T e r m s  of  t h e  A s y m p t o t i c  E x p a n s i o n .  Setting k = l, rn = - 3  in 
(7) and taking the test function as v = ev(:)(y), we get the problem 

c~{:3)u,Jy = 0 in a l  , o'};3)r~j = 0 on F1. (29) 

For rn = - 3 ,  Eq. (8) takes the form 

a}/a) u (2) " "u (:) (30) = aijkl(Y) k,ly + aijkltY) k,lx" 

Substituting into (29) expressions (27) for u0) ,  we get 

cr}j "-3) a l_ ~u(2) , , u(O) tXl ~ ---- i j k lkY)  k,ly -[- a i j k l ( y ) X ~ l ( y ) u ~ O , ~ x l , ( x l )  -- a i j l l ( Y ) y a  a,lzlx~, ] nu a i j k l ( Y ) ~ k ( y ) O ,  l x ( X l )  

la (-1) aijki(y)X2(y)~}~:?~(Xl ). (31) + aijki(y)Uk,lx(Xl) + aij/t~(y)sflV, lz(Xl ) + aijkl(Y)Xk (y)wa,lx (Xl) + 

Moreover, 

u(2)(xi,y) should be a periodic function of yl with period m, (u (2)) = O. (32) 

We introduce the function Y(P)(y) as a solution of "the second PC of beam theory:" 

(aijkt(y)Y(,Pt~ + aijkl(y)Xlp(y)),jy = 0 in P1, (33) 

(aijkt(y)yk~,l~ + 1, aijkl(Y)X k (y))nj  = 0 on 3' 

(Y(P) is a periodic function of y: with period m, (Y(P)) = 0), 
the function T(y)  as the solution of "the second PC of thermoelastic beams": 

(aijkt(Y)Tk,Zy + aijkl(Y)~k(Y)),jy = 0 in P1, (34) 

(aijkl(Y)Tk,ly + aijkl(y).Tk(y))nj = 0 on 7 

(T is a periodic function of yl with period rn, (T) = 0), 
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the function Z(y) as a solution of "the second P(: of beam torsion": 

(aijkl(Y)ZLly + aijkl(Y)X~(Y)),jy = 0 in P1, (35) 

(aijkl(Y)Zk,ly + aijkl(y)X3(y))nj = 0 on 3' 

(Z is a periodic function of Yl with period m, (Z) = 0). 
With the help of the PC (33)-(35) the solution of (29)-(31) can be written as 

u (2) = Xl"(Y)Up,l~(xl) - X2C'(y)u(~ + T(y)O,I=(xl) 

+y (1 ) [ .  ~u(0) [Xl. ~ y(" ) r .  ~w(-1) ' t,j) 1,1xlxt, ) -1- X3(y)~,lx(Xl) -[- I,.r) a,lxl, Xl) "[- Z(Y)Cp!ll)z(Xl ). (36) 

Substitution of (36) into (31) with allowance for (21) yields 

2~ (0) O"!; 3) = (aijll(Y) + aijkl(y)X~lly(Y))Ul,lz(Xl ) - (aij11(y)ya + aijkl(y)Xk,ly(y))ua,lzlz(Xl) 
(~) 

+ (aijkz(Y)Y(,ll~(Y)+ aijkl(Y)X~l(Y))Ul~l~(xl)+ (aijkz(Y)Y~,z~(Y) 

+ aijkl(y)Xla(y))w(.ll2(Xl ) + (aij#3(Y)S# + aijkl(y)Xa,ly(Y))~,lx(Xl) 

+ (a,j~a(y)Zk.,y(y)+ a,ykl(y)X3(y))~!~))~(xl)+ (a,jk,(y)T~t~(y) + a,lkl(y).~,(y))O,l~(z~). (37) 

Integrating (37) with respect to PC P1, we obtain 

N~I 3) Z 00rr A~ D111ul~ + U l h r  a d z  -[- 111~,1x + , + (38) = lltJl,lx + + ra W(-1) G11r (lll)x Cll0,1x. 

Multipling (37) by yfl, setting j = 1, and integrating the resulting relation for P1, we find that 

i ! ; 3 )  10 A~olu(ao,~zlx ./ . (0) a _ (-1) _ _(-1) = Ai~UI,lx + + t~i]~lt'l,l~l~ + ai~a'Wa,lx + di~, lz  + gi~,lzl~ + ci~0,1x, (39) 

Cij = (aijkz(y)T(1)y + aijkl(Y).~k(y)}; 

where 

Gij = (aifl:l(Y)Zk,lv(Y) + aijkl(y)X3(y)); 

diap = ((ailkz(Y)Y(,~(Y) + ailkl(y)Xlp(y))YB); 

(p) lp 
Dijp = (aijkl(Y)Y~,ly(Y) + aijkl(Y)X k (Y)); 

ci# = ((ailkl(y)T~ll~(y) + ailkl(Y).~k(y))yzl; 

gi# = ((ailkl(Y)ZLlv(Y) + ailkl (y)X~(y))yz). 

The solution of problem (25)-(28) allows us to compute the functions u~ ~ w (-U and ~(-U from 

the asymptotic expansion (3). Thus, for displacements we get the expression u" ~ e-lw(-1)(xl)eo, - 
w(-1)'x ~e Y~ ~.1~ 1) 1 + e-lyhsae/Jqv (-1) + u~~ where functions on the right-hand side are known (if the solution 

of the limiting problem is known). The formal exactness of the limiting problem (25)-(28) is equal to ~ for 
displacements and ~-3 for stresses. 

Cell problems can be solved either numerically or with the help of special methods developed, for 
example, in [15, 20-24]. 
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